Skip to main content

What Is an Operating System?

Not all computers have operating systems. The computer that controls the microwave oven in your kitchen, for example, doesn't need an operating system. It has one set of tasks to perform, very straightforward input to expect (a numbered keypad and a few pre-set buttons) and simple, never-changing hardware to control. For a computer like this, an operating system would be unnecessary baggage, driving up the development and manufacturing costs significantly and adding complexity where none is required. Instead, the computer in a microwave oven simply runs a single hard-wired program all the time.
For other devices, an operating system creates the ability to:
·         serve a variety of purposes
·         interact with users in more complicated ways
·         keep up with needs that change over time
All desktop computers have operating systems. The most common are the Windows family of operating systems developed by Microsoft, the Macintosh operating systems developed by Apple and the UNIX family of operating systems (which have been developed by a whole history of individuals, corporations and collaborators). There are hundreds of other operating systems available for special-purpose applications, including specializations for mainframes, robotics, and manufacturing, real-time control systems and so on.
In any device that has an operating system, there's usually a way to make changes to how the device works. This is far from a happy accident; one of the reasons operating systems are made out of portable code rather than permanent physical circuits is so that they can be changed or modified without having to scrap the whole device.
For a desktop computer user, this means you can add a new security update, system patch, new application or even an entirely new operating system rather than junk your computer and start again with a new one when you need to make a change. As long as you understand how an operating system works and how to get at it, in many cases you can change some of the ways it behaves. The same thing goes for your phone, too.


Comments

Popular posts from this blog

Black swan

A  black swan event  is an incident that occurs randomly and unexpectedly and has wide-spread ramifications. The event is usually followed with reflection and a flawed rationalization that it was inevitable. The phrase illustrates the frailty of inductive reasoning and the danger of making sweeping generalizations from limited observations. The term came from the idea that if a man saw a thousand swans and they were all white, he might logically conclude that all swans are white. The flaw in his logic is that even when the premises are true, the conclusion can still be false. In other words, just because the man has never seen a black swan, it does not mean they do not exist. As Dutch explorers discovered in 1697, black swans are simply outliers -- rare birds, unknown to Europeans until Willem de Vlamingh and his crew visited Australia. Statistician Nassim Nicholas Taleb uses the phrase black swan as a metaphor for how humans deal with unpredictable events in his 2007...

A Graphics Processing Unit (GPU)

A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calculations, primarily for the purpose of rendering images. A GPU may be found integrated with a central processing unit (CPU) on the same circuit, on a graphics card or in the motherboard of a personal computer or server. In the early days of computing, the CPU performed these calculations. As more graphics-intensive applications such as AutoCAD were developed; however, their demands put strain on the CPU and degraded performance. GPUs came about as a way to offload those tasks from CPUs, freeing up their processing power. NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market. GPU vs. CPU A graphics processing unit is able to render images more quickly than a central processing unit because of its parallel processing architecture, which allows it to perform multiple calculations at the same time. A single CPU does not have this capability, although multi...

6G (sixth-generation wireless)

6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing.  Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and wi...