Skip to main content

Transport Layer Security (TLS)


Transport Layer Security (TLS) is a protocol that provides authentication, privacy, and data integrity between two communicating computer applications. It's the most widely-deployed security protocol used today and is used for web browsers and other applications that require data to be securely exchanged over a network, such as web browsing sessions, file transfers, VPN connections, remote desktop sessions, and voice over IP (VoIP).

TLS evolved from Netscape's Secure Sockets Layer (SSL) protocol and has largely superseded it, although the terms SSL or SSL/TLS are still sometimes used. Key differences between SSL and TLS that make TLS a more secure and efficient protocol are message authentication, key material generation and the supported cipher suites, with TLS supporting newer and more secure algorithms. TLS and SSL are not interoperable, though TLS currently provides some backward compatibility in order to work with legacy systems.

History and development

The Internet Engineering Task Force (IETF) officially took over the SSL protocol to standardize it with an open process and released version 3.1 of SSL in 1999 as TLS 1.0. The protocol was renamed TLS to avoid legal issues with Netscape, which developed the SSL protocol as a key feature part of its original web browser. According to the protocol specification, TLS is composed of two layers: the TLS record protocol and the TLS handshake protocol. The record protocol provides connection security, while the handshake protocol allows the server and client to authenticate each other and to negotiate encryption algorithms and cryptographic keys before any data is exchanged.

TLS attacks

Implementation flaws have always been a big problem with encryption technologies, and TLS is no exception. The infamous Heartbleed bug was the result of a surprisingly small bug in a piece of logic that relates to OpenSSL's implementation of the TLS heartbeat mechanism, which is designed to keep connections alive even when no data is being transmitted. Although TLS is not vulnerable to the POODLE attack, because it specifies that all padding bytes must have the same value and be verified, a variant of the attack has exploited certain implementations of the TLS protocol that don't correctly validate encryption padding byte requirements.

Comments

Popular posts from this blog

Black swan

A  black swan event  is an incident that occurs randomly and unexpectedly and has wide-spread ramifications. The event is usually followed with reflection and a flawed rationalization that it was inevitable. The phrase illustrates the frailty of inductive reasoning and the danger of making sweeping generalizations from limited observations. The term came from the idea that if a man saw a thousand swans and they were all white, he might logically conclude that all swans are white. The flaw in his logic is that even when the premises are true, the conclusion can still be false. In other words, just because the man has never seen a black swan, it does not mean they do not exist. As Dutch explorers discovered in 1697, black swans are simply outliers -- rare birds, unknown to Europeans until Willem de Vlamingh and his crew visited Australia. Statistician Nassim Nicholas Taleb uses the phrase black swan as a metaphor for how humans deal with unpredictable events in his 2007...

A Graphics Processing Unit (GPU)

A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calculations, primarily for the purpose of rendering images. A GPU may be found integrated with a central processing unit (CPU) on the same circuit, on a graphics card or in the motherboard of a personal computer or server. In the early days of computing, the CPU performed these calculations. As more graphics-intensive applications such as AutoCAD were developed; however, their demands put strain on the CPU and degraded performance. GPUs came about as a way to offload those tasks from CPUs, freeing up their processing power. NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market. GPU vs. CPU A graphics processing unit is able to render images more quickly than a central processing unit because of its parallel processing architecture, which allows it to perform multiple calculations at the same time. A single CPU does not have this capability, although multi...

6G (sixth-generation wireless)

6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing.  Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and wi...