Skip to main content

Load balancing

 

Load balancing is a technique used to distribute workloads uniformly across servers or other compute resources to optimize network efficiency, reliability and capacity. Load balancing is performed by an appliance -- either physical or virtual -- that identifies in real time which server in a pool can best meet a given client request, while ensuring heavy network traffic doesn't unduly overwhelm a single server.

In addition to maximizing network capacity and performance, load balancing provides failover. If one server fails, a load balancer immediately redirects its workloads to a backup server, thus mitigating the impact on end users.

Load balancing is usually categorized as supporting either Layer 4 or Layer 7. Layer 4 load balancers distribute traffic based on transport data, such as IP addresses and Transmission Control Protocol (TCP) port numbers. Layer 7 load-balancing devices make routing decisions based on application-level characteristics that include HTTP header information and the actual contents of the message, such as URLs and cookies. Layer 7 load balancers are more common, but Layer 4 load balancers remain popular, particularly in edge deployments.

How load balancing works

Load balancers handle incoming requests from users for information and other services. They sit between the servers that handle those requests and the internet. Once a request is received, the load balancer first determines which server in a pool is available and online and then routes the request to that server. During times of heavy loads, a load balancer can dynamically add servers in response to spikes in traffic. Conversely, they can drop servers if demand is low.

A load balancer can be a physical appliance, a software instance or a combination of both. Traditionally, vendors have loaded proprietary software onto dedicated hardware and sold them to users as stand-alone appliances -- usually in pairs, to provide failover if one goes down. Growing networks require purchasing additional and/or bigger appliances.

In contrast, software load balancing runs on virtual machines (VMs) or white box servers, most likely as a function of an application delivery controller (ADC). ADCs typically offer additional features, like caching, compression, traffic shaping, etc. Popular in cloud environments, virtual load balancing can offer a high degree of flexibility -- for example, enabling users to automatically scale up or down to mirror traffic spikes or decreased network activity.

Load-balancing methods

Load-balancing algorithms determine which servers receive specific incoming client requests. Standard methods are as follows:

  • The hash-based approach calculates a given client's preferred server based on designated keys, such as HTTP headers or IP address information. This method supports session persistence, or stickiness, which benefits applications that rely on user-specific stored state information, such as checkout carts on e-commerce sites.
  • The least-connections method favors servers with the fewest ongoing transactions, i.e., the "least busy."
  • The least-time algorithm considers both server response times and active connections -- sending new requests to the fastest servers with the fewest open requests.
  • The round robin method -- historically, the load-balancing default -- simply cycles through a list of available servers in sequential order.

Formulas can vary significantly in sophistication and complexity. Weighted load-balancing algorithms, for example, also take into account server hierarchies -- with preferred, high-capacity servers receiving more traffic than those assigned lower weights.


Comments

Popular posts from this blog

Black swan

A  black swan event  is an incident that occurs randomly and unexpectedly and has wide-spread ramifications. The event is usually followed with reflection and a flawed rationalization that it was inevitable. The phrase illustrates the frailty of inductive reasoning and the danger of making sweeping generalizations from limited observations. The term came from the idea that if a man saw a thousand swans and they were all white, he might logically conclude that all swans are white. The flaw in his logic is that even when the premises are true, the conclusion can still be false. In other words, just because the man has never seen a black swan, it does not mean they do not exist. As Dutch explorers discovered in 1697, black swans are simply outliers -- rare birds, unknown to Europeans until Willem de Vlamingh and his crew visited Australia. Statistician Nassim Nicholas Taleb uses the phrase black swan as a metaphor for how humans deal with unpredictable events in his 2007...

A Graphics Processing Unit (GPU)

A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calculations, primarily for the purpose of rendering images. A GPU may be found integrated with a central processing unit (CPU) on the same circuit, on a graphics card or in the motherboard of a personal computer or server. In the early days of computing, the CPU performed these calculations. As more graphics-intensive applications such as AutoCAD were developed; however, their demands put strain on the CPU and degraded performance. GPUs came about as a way to offload those tasks from CPUs, freeing up their processing power. NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market. GPU vs. CPU A graphics processing unit is able to render images more quickly than a central processing unit because of its parallel processing architecture, which allows it to perform multiple calculations at the same time. A single CPU does not have this capability, although multi...

6G (sixth-generation wireless)

6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing.  Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and wi...