Skip to main content

Cyberterrorism

 

Cyberterrorism is any premeditated, politically motivated attack against information systems, programs and data that results in violence.

The details of cyberterrorism and the parties involved are viewed differently by various organizations. The U.S. Federal Bureau of Investigation (FBI) defines cyberterrorism as any "premeditated, politically motivated attack against information, computer systems, computer programs and data which results in violence against noncombatant targets by subnational groups or clandestine agents."

Unlike a nuisance virus or computer attack that results in a denial of service (DoS), the FBI distinguishes a cyberterrorist attack as a type of cybercrime explicitly designed to cause physical harm. However, there is no current consensus between various governments and the information security community on what qualifies as an act of cyberterrorism.

Other organizations and experts suggest that less harmful attacks can also be considered to be acts of cyberterrorism, as long as the attacks are intended to be disruptive or to further the attackers' political stance. In some cases, the differentiation between cyberterrorism attacks and more ordinary cybercrime activity lies in the intention: The primary motivation for cyberterrorism attacks is to disrupt or harm the victims, even if the attacks do not result in physical harm or cause extreme financial harm.

In other cases, the differentiation is tied to the outcome of a cyber-attack; many cybersecurity experts believe an incident should be considered cyberterrorism if it results in physical harm or loss of life, either directly or indirectly through damage or disruption to critical infrastructure. However, others believe physical harm is not a prerequisite for classifying a cyber-attack as a terrorist event. The North Atlantic Treaty Organization, for example, has defined cyberterrorism as "a cyber-attack using or exploiting computer or communication networks to cause sufficient destruction or disruption to generate fear or to intimidate a society into an ideological goal."

According to the U.S. Commission on Critical Infrastructure Protection, possible cyberterrorist targets include the banking industry, military installations, power plants, air traffic control centers and water systems.

Methods used for cyberterrorism

The intention of cyberterrorist groups is to cause mass chaos, disrupt critical infrastructure, support political activism or hacktivism, and inflict physical damage or even loss of life. Cyberterrorism actors use a variety of attack methods. These include but are not limited to the following:

  • Advanced persistent threat (APT) attacks use sophisticated and concentrated penetration methods to gain network access and stay there undetected for a period of time with the intention of stealing data. Typical targets for APT attacks are organizations with high-value information, such as national defense, manufacturing and the financial industry.
  • Computer viruses, worms and malware target information technology (IT) control systems and can affect utilities, transportation systems, power grids, critical infrastructure and military systems, creating instability.
  • DoS attacks are intended to prevent legitimate users from accessing targeted computer systems, devices or other computer network resources and can be aimed at critical infrastructure and governments.
  • Hacking, or gaining unauthorized access, seeks to steal critical data from institutions, governments and businesses.
  • Ransomware, a type of malware, holds data or information systems hostage until the victim pays the ransom.
  • Phishing attacks attempt to collect information through a target's email, using that information to access systems or steal the victim's identity.

Defending against cyberterrorism

The key to countering the threat of cyberterrorism is to implement extensive cybersecurity measures and vigilance.

On the corporate level, businesses must ensure that all internets of things devices are properly secured and inaccessible via public networks. To protect against ransomware and similar types of attacks, organizations must regularly backup systems; utilize firewalls, antivirus software and antimalware; and implement continuous monitoring techniques.

Companies must also develop IT security policies to protect business data. This includes limiting access to sensitive data and enforcing strict password and authentication procedures, like two-factor authentication or multifactor authentication.

Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...