Skip to main content

Data Visualization

 

Data visualization is the practice of translating information into a visual context, such as a map or graph, to make data easier for the human brain to understand and pull insights from. The main goal of data visualization is to make it easier to identify patterns, trends and outliers in large data sets. The term is often used interchangeably with others, including information graphics, information visualization and statistical graphics.

Data visualization is one of the steps of the data science process, which states that after data has been collected, processed and modeled, it must be visualized for conclusions to be made. Data visualization is also an element of the broader data presentation architecture (DPA) discipline, which aims to identify, locate, manipulate, format and deliver data in the most efficient way possible.

Data visualization is important for almost every career. It can be used by teachers to display student test results, by computer scientists exploring advancements in artificial intelligence (AI) or by executives looking to share information with stakeholders. It also plays an important role in big data projects. As businesses accumulated massive collections of data during the early years of the big data trend, they needed a way to quickly and easily get an overview of their data. Visualization tools were a natural fit.

Visualization is central to advanced analytics for similar reasons. When a data scientist is writing advanced predictive analytics or machine learning (ML) algorithms, it becomes important to visualize the outputs to monitor results and ensure that models are performing as intended. This is because visualizations of complex algorithms are generally easier to interpret than numerical outputs.

Why is data visualization important?

Data visualization provides a quick and effective way to communicate information in a universal manner using visual information. The practice can also help businesses identify which factors affect customer behavior; pinpoint areas that need to be improved or need more attention; make data more memorable for stakeholders; understand when and where to place specific products; and predict sales volumes.

Other benefits of data visualization include the following:

  • the ability to absorb information quickly, improve insights and make faster decisions;
  • an increased understanding of the next steps that must be taken to improve the organization;
  • an improved ability to maintain the audience's interest with information they can understand;
  • an easy distribution of information that increases the opportunity to share insights with everyone involved;
  • eliminate the need for data scientists since data is more accessible and understandable; and
  • an increased ability to act on findings quickly and, therefore, achieve success with greater speed and less mistakes.

Data visualization and big data

The increased popularity of big data and data analysis projects has made visualization more important than ever. Companies are increasingly using machine learning to gather massive amounts of data that can be difficult and slow to sort through, comprehend and explain. Visualization offers a means to speed this up and present information to business owners and stakeholders in ways they can understand.

Big data visualization often goes beyond the typical techniques used in normal visualization, such as pie charts, histograms and corporate graphs. It instead uses more complex representations, such as heat maps and fever charts. Big data visualization requires powerful computer systems to collect raw data, process it and turn it into graphical representations that humans can use to quickly draw insights.

While big data visualization can be beneficial, it can pose several disadvantages to organizations. They are as follows:

  • To get the most out of big data visualization tools, a visualization specialist must be hired. This specialist must be able to identify the best data sets and visualization styles to guarantee organizations are optimizing the use of their data.
  • Big data visualization projects often require involvement from IT, as well as management, since the visualization of big data requires powerful computer hardware, efficient storage systems and even a move to the cloud.
  • The insights provided by big data visualization will only be as accurate as the information being visualized. Therefore, it is essential to have people and processes in place to govern and control the quality of corporate data, metadata and data sources.

Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...