Skip to main content

Zero-day

 

Zero-day is a flaw in software, hardware or firmware that is unknown to the party or parties responsible for patching or otherwise fixing the flaw. The term zero day may refer to the vulnerability itself, or an attack that has zero days between the time the vulnerability is discovered and the first attack. Once a zero-day vulnerability has been made public, it is known as an n-day or one-day vulnerability.

Ordinarily, when someone detects that a software program contains a potential security issue, that person or company will notify the software company (and sometimes the world at large) so that action can be taken. Given time, the software company can fix the code and distribute a patch or software update. Even if potential attackers hear about the vulnerability, it may take them some time to exploit it; meanwhile, the fix will hopefully become available first. Sometimes, however, a hacker may be the first to discover the vulnerability. Since the vulnerability isn't known in advance, there is no way to guard against the exploit before it happens. Companies exposed to such exploits can, however, institute procedures for early detection.

Security researchers cooperate with vendors and usually agree to withhold all details of zero-day vulnerabilities for a reasonable period before publishing those details. Google Project Zero, for example, follows industry guidelines that give vendors up to 90 days to patch a vulnerability before the finder of the vulnerability publicly discloses the flaw. For vulnerabilities deemed "critical," Project Zero allows only seven days for the vendor to patch before publishing the vulnerability; if the vulnerability is being actively exploited, Project Zero may reduce the response time to less than seven days.

Zero-day exploits detection

Zero-day exploits tend to be very difficult to detect. Antimalware software and some intrusion detection systems (IDSes) and intrusion prevention systems (IPSes) are often ineffective because no attack signature yet exists. This is why the best way to detect a zero-day attack is user behavior analytics. Most of the entities authorized to access networks exhibit certain usage and behavior patterns that are considered to be normal. Activities falling outside of the normal scope of operations could be an indicator of a zero-day attack.

For example, a web application server normally responds to requests in specific ways. If outbound packets are detected exiting the port assigned to that web application, and those packets do not match anything that would ordinarily be generated by the application, it is a good indication that an attack is going on.

Zero-day exploit period

Some zero-day attacks have been attributed to advanced persistent threat (APT) actors, hacking or cybercrime groups affiliated with or a part of national governments. Attackers, especially APTs or organized cybercrime groups, are believed to reserve their zero-day exploits for high-value targets.

N-day vulnerabilities continue to live on and are subject to exploits long after the vulnerabilities have been patched or otherwise fixed by vendors. For example, the credit bureau Equifax was breached in 2017 by attackers using an exploit against the Apache Struts web framework. The attackers exploited a vulnerability in Apache Struts that was reported, and patched, earlier in the year; Equifax failed to patch the vulnerability and was breached by attackers exploiting the unpatched vulnerability.

Likewise, researchers continue to find zero-day vulnerabilities in the Server Message Block protocol, implemented in the Windows OS for many years. Once the zero-day vulnerability is made public, users should patch their systems, but attackers continue to exploit the vulnerabilities for as long as unpatched systems remain exposed on the internet.

Defending against zero-day attacks

Zero-day exploits are difficult to defend against because they are so difficult to detect. Vulnerability scanning software relies on malware signature checkers to compare suspicious code with signatures of known malware; when the malware uses a zero-day exploit that has not been previously encountered, such vulnerability scanners will fail to block the malware.

Since a zero-day vulnerability can't be known in advance, there is no way to guard against a specific exploit before it happens. However, there are some things that companies can do to reduce their level of risk exposure.

  • Use virtual local area networks to segregate some areas of the network or use dedicated physical or virtual network segments to isolate sensitive traffic flowing between servers.
  • Implement IPsec, the IP security protocol, to apply encryption and authentication to network traffic.
  • Deploy an IDS or IPS. Although signature-based IDS and IPS security products may not be able to identify the attack, they may be able to alert defenders to suspicious activity that occurs as a side effect to the attack.
  • Use network access control to prevent rogue machines from gaining access to crucial parts of the enterprise environment.
  • Lock down wireless access points and use a security scheme such as Wi-Fi Protected Access 2 for maximum protection against wireless-based attacks.
  • Keep all systems patched and up to date. Although patches will not stop a zero-day attack, keeping network resources fully patched may make it more difficult for an attack to succeed. When a zero-day patch does become available, apply it as soon as possible.
  • Perform regular vulnerability scanning against enterprise networks and lock down any vulnerabilities that are discovered.

While maintaining a high standard for information security may not prevent all zero-day exploits, it can help defeat attacks that use zero-day exploits after the vulnerabilities have been patched.

Comments

Popular posts from this blog

Black swan

A  black swan event  is an incident that occurs randomly and unexpectedly and has wide-spread ramifications. The event is usually followed with reflection and a flawed rationalization that it was inevitable. The phrase illustrates the frailty of inductive reasoning and the danger of making sweeping generalizations from limited observations. The term came from the idea that if a man saw a thousand swans and they were all white, he might logically conclude that all swans are white. The flaw in his logic is that even when the premises are true, the conclusion can still be false. In other words, just because the man has never seen a black swan, it does not mean they do not exist. As Dutch explorers discovered in 1697, black swans are simply outliers -- rare birds, unknown to Europeans until Willem de Vlamingh and his crew visited Australia. Statistician Nassim Nicholas Taleb uses the phrase black swan as a metaphor for how humans deal with unpredictable events in his 2007...

A Graphics Processing Unit (GPU)

A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calculations, primarily for the purpose of rendering images. A GPU may be found integrated with a central processing unit (CPU) on the same circuit, on a graphics card or in the motherboard of a personal computer or server. In the early days of computing, the CPU performed these calculations. As more graphics-intensive applications such as AutoCAD were developed; however, their demands put strain on the CPU and degraded performance. GPUs came about as a way to offload those tasks from CPUs, freeing up their processing power. NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market. GPU vs. CPU A graphics processing unit is able to render images more quickly than a central processing unit because of its parallel processing architecture, which allows it to perform multiple calculations at the same time. A single CPU does not have this capability, although multi...

6G (sixth-generation wireless)

6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing.  Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and wi...