Skip to main content

Data streaming

Data streaming is the continuous transfer of data at a steady, high-speed rate.
Although the concept of data streaming is not new, its practical applications are a relatively recent development. This is because in the early years of the world wide web, internet connectivity was not always reliable and bandwidth limitations often prevented streaming data to arrive at its destination in an unbroken sequence. Developers created buffers to allow data streams to catch up, but the resulting jitter caused the user experience to be so poor that most consumers preferred to download content rather than stream it.

Today, with the advent of broadband internet, cloud computing and the internet of things (IoT), there is an increased interest in analyzing the data from streaming sources to make data-driven decisions in real time. To facilitate the need for real-time information from disparate data sources, many companies have replaced traditional batch processing with streaming data architectures that can accommodate batch processing.

In batch processing, newly arriving data elements are collected in a group and the entire group is processed at some future time. In contrast, a streaming data architecture processes data in motion and an ETL batch is treated as just one more event in a continuous stream of events.

To benefit from data streaming, businesses supported by streaming architectures require powerful analytics tools for ingesting and processing information. Popular tools for working with data streams include: 

Amazon Kinesis Firehose - an Amazon Web Service (AWS) for processing big data in real time. Kinesis is capable of processing hundreds of terabytes per hour from high volumes of streaming data from sources such as operating logs, financial transactions and social media feeds.

Apache Flink - a distributed data processing platform for use in big data applications, primarily involving analysis of data stored in Hadoop clusters. Flink handles both batch and stream processing jobs, with data streaming the default implementation and batch jobs running as special-case versions of streaming applications.

Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...