Skip to main content

Data center capacity planning

 What is data center capacity planning, simply explained?

Data center capacity planning is the establishment of a strategy that ensures an IT organization's computing resources, power load, footprint and cooling capacity will be able to meet the workload demands of its users and customers.

Why is capacity planning important?

Data centers are limited in terms of footprint, power consumption and cooling capacity. While redundant backup power and fault-tolerant server clusters can potentially increase uptime, they can also reduce the total available power capacity. 

Planning too much capacity for the given workloads wastes capital expenditures and might draw power to idle, unused servers. Over-provisioning computer room air conditioners also results in below optimal efficiency operation.

Under-planning capacity is also a big problem, because it can debilitate business operations. Without adequate power and cooling for the data center's workload, outages are more common. Without enough computing, network and storage capacity, applications encounter bottlenecks and potentially stop working or take too long to ramp up new applications.

How does capacity planning work?

IT organizations should start capacity planning with agreed-upon service performance metrics, such as storing data for X amount of days, and running applications with a response time of X. To be effective, the capacity planning process requires sophisticated load calculations both at normal and peak performance times. To determine optimal capacity, IT organizations can benchmark operations with either simulated or real load testing, trend analysis or modeling using tools designed for this purpose.

Capacity planning software tools can help the administrator calculate the resources and power draw that a data center must support, given current and projected future operations. Such tools range from simple spreadsheets to 3D renderings of the data center with automated asset discovery and documentation. Some sophisticated capacity management tools will even suggest outsourcing options when major power, space and cooling upgrades to the physical site are cost or time prohibitive.

Virtualization, which allows data center managers to consolidate servers by stacking multiple workloads onto one physical server and powering off others, should also be considered in data center capacity planning. With virtualization and cloud computing, companies can plan for more flexible capacity that scales up and down without one-to-one investments in power or IT systems. For example, the retail organization can scale up on hosted cloud servers in Q4, keeping its data center build appropriate to normal demand. To handle a temporary spike in transactions during a large sale, the retailer can increase server utilization via virtualization. This requires applications to be designed for agility across platforms and management tools that can oversee multiple infrastructures.

Who is responsible for data center capacity planning?

It is usually the data center manager or IT director's responsibility to chart a capacity plan and determine what strategy will accommodate business needs best. IT service management frameworks like ITIL provide the planner with detailed recommendations for capacity management.


Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...