Skip to main content

Virtual reality sickness


Virtual reality sickness (VR motion sickness) is the physical discomfort that occurs when an end user's brain receives conflicting signals about self-movement in a digital environment. While the exact number of people who will be affected by VR motion sickness cannot be known in advance, software engineers who develop VR and augmented reality (AR) environments typically assume that 25% of viewers will experience VR motion sickness. This is the same percentage of people who experience motion sickness on an airplane while traveling through low altitude turbulence.

VR sickness is caused by conflicting signals sent to the brain from the person's eyes, inner ear and body tissue sensory receptors. A pronounced feeling of illness typically occurs when the viewer is watching a digital representation of themselves appear to move quickly in a digital environment while the person's physical body remains stationary. Like other types of simulator sickness, the symptoms of VR motion sickness can include nausea, dizziness/lack of balance, drowsiness, warmth, sweating, headaches, disorientation, eye strain and vomiting. Studies have shown that participants in a VR experience can feel ill up to several hours after taking off their VR headsets.

Underlying causes of VR sickness

There are several theories about the root causes of VR motion sickness and differences in how individuals use vision to maintain their balance may be one contributing element. The biggest contributing factor, however, is thought to be caused by the sensory conflicts that send confusing messages to the brain. This is because even though the person's eyes may say they are walking around a virtual world, their body will tell them that they are actually sitting down and those conflicting sensory signals cause a feeling of illness.

Current research indicates that gender and age may also play an important role in determining who may fall victim to VR motion sickness. For example, woman are more likely to be affected than men. While some researchers believe this is because women lag behind men in the consumption of virtual reality programming, other researchers believe that women are more likely to get sick from VR because they have better peripheral vision than men and require a larger field of view (FOV) to avoid motion sickness. Different ages and stages in life may also determine if a user will be affected by VR sickness. Genetics are also thought to play a role in determining who will be affected by VR motion sickness. If a person's family exhibits migraines, inner ear conditions, problems with sight, or past experiences with motion sickness, then it is likely the offspring will be genetically predisposed to suffer in the same way.

How VR developers can avoid making end users sick

The first fix software developers can make to avoid giving users VR motion sickness is to adjust the frame per second (FPS) rate to reduce lag time. VR engineers recommend that instead of focusing attention on using more processing power to create a sharper picture, developers should focus on increasing the speed at which each frame refreshes to at least 90 FPS. This speed will help reduce delay or shaking in the images as they pass across the screen.

Sensory conflict can be aggravated by latency. If a VR participant looks to the right while wearing a VR helmet, for example, the screen shifts left to ensure the viewer's digital environment matches their physical actions. While this shift appears to be occurring in real time, it actually occurs in near real-time. While the movement across the screen may seem immediate to the viewer, the lag time still creates a mismatch between what the person's eyes tell them and what their body's tissue sensors are actually experiencing.

Perhaps the best way to avoid VR motion sickness, however, is to test each shot while creating it and expose someone with high sensitivity to frame rates and see how they react. This approach will inform developers if their shots are smooth and clean enough to leave users unaffected. Other proposed fixes include using headsets that are placed further from the user's face and using mixed reality (MR) instead of virtual reality to provide the viewer with a fixed horizon or visual reference point.

Unlike virtual reality which immerses the end user in a completely digital environment, or augmented reality which layers digital content on top of a physical environment, mixed reality blends digital and real world settings. Digital cinematographers have had good success preventing VR sickness by simply adding a virtual representation of the viewer's nose or hand to the MR screen. Unfortunately, many current VR locomotion solutions have negative outcomes along with the positive. For example, the extremely helpful fix of using mixed reality takes away the immersive experience that VR users are paying for.


Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...