Skip to main content

Artificial neuron


An artificial neuron is a connection point in an artificial neural network. Artificial neural networks, like the human body's biological neural network, have a layered architecture and each network node (connection point) has the capability to process input and forward output to other nodes in the network. In both artificial and biological architectures, the nodes are called neurons and the connections are characterized by synaptic weights, which represent the significance of the connection. As new data is received and processed, the synaptic weights change and this is how machine learning occurs.

Artificial neurons are modeled after the hierarchical arrangement of neurons in biological sensory systems. In the visual system, for example, light input passes through neurons in successive layers of the retina before being passed to neurons in the thalamus of the brain and then on to neurons in the brain's visual cortex. As the neurons pass signals through an increasing number of layers, the brain progressively extracts more information until it is confident it can identify what the person is seeing. In artificial intelligence, this fine tuning process is known as deep learning.

In both artificial and biological networks, when neurons process the input they receive, they decide whether the output should be passed on to the next layer as input. The decision of whether or not to send information on is called bias and it's determined by an activation function built into the system. For example, an artificial neuron may only pass an output signal on to the next layer if its inputs (which are actually voltages) sum to a value above some particular threshold value. Because activation functions can either be linear or non-linear, neurons will often have a wide range of convergence and divergence. Divergence is the ability for one neuron to communicate with many other neurons in the network and convergence is the ability for one neuron to receive input from many other neurons in the network.

Comments

Popular posts from this blog

Understanding the Evolution: AI, ML, Deep Learning, and Gen AI

In the ever-evolving landscape of artificial intelligence (AI) and machine learning (ML), one of the most intriguing advancements is the emergence of General AI (Gen AI). To grasp its significance, it's essential to first distinguish between these interconnected but distinct technologies. AI, ML, and Deep Learning: The Building Blocks Artificial Intelligence refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. Machine Learning, a subset of AI, empowers machines to learn from data and improve over time without explicit programming. Deep Learning, a specialized subset of ML, involves neural networks with many layers (hence "deep"), capable of learning intricate patterns from vast amounts of data. Enter General AI (Gen AI): Unraveling the Next Frontier Unlike traditional AI systems that excel in specific tasks (narrow AI), General AI aims to replicate human cognitive abilities across various domains. I...

Normalization of Database

Database Normalisation is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables. Normalization is used for mainly two purpose, Eliminating reduntant(useless) data. Ensuring data dependencies make sense i.e data is logically stored. Problem Without Normalization Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of  Student  table. S_id S_Name S_Address Subject_opted 401 Adam Noida Bio 402 Alex Panipat Maths 403 Stuart Jammu Maths 404 Adam Noida Physics Updation Anamoly :  To upda...

How to deal with a toxic working environment

Handling a toxic working environment can be challenging, but there are steps you can take to address the situation and improve your experience at work: Recognize the Signs : Identify the specific behaviors or situations that contribute to the toxicity in your workplace. This could include bullying, harassment, micromanagement, negativity, or lack of support from management. Maintain Boundaries : Set boundaries to protect your mental and emotional well-being. This may involve limiting interactions with toxic individuals, avoiding gossip or negative conversations, and prioritizing self-care outside of work. Seek Support : Reach out to trusted colleagues, friends, or family members for support and advice. Sharing your experiences with others can help you feel less isolated and provide perspective on the situation. Document Incidents : Keep a record of any incidents or behaviors that contribute to the toxic environment, including dates, times, and specific details. This documentation may b...