Skip to main content

Sentiment analysis (Opinion mining)


Sentiment analysis, also referred to as opinion mining, is an approach to natural language processing (NLP) that identifies the emotional tone behind a body of text. This is a popular way for organizations to determine and categorize opinions about a product, service or idea. It involves the use of data mining, machine learning (ML) and artificial intelligence (AI) to mine text for sentiment and subjective information.

Sentiment analysis systems help organizations gather insights from unorganizedand unstructured text that comes from online sources such as emails, blog posts, support tickets, web chats, social media channels, forumsand comments. Algorithms replace manual data processing by implementing rule-based, automatic or hybrid methods. Rule-based systems perform sentiment analysis based on predefined, lexicon-based rules while automatic systems learn from data with machine learning techniques. A hybrid sentiment analysis combines both approaches.

In addition to identifying sentiment, opinion mining can extract the polarity (or the amount of positivity and negativity), subject and opinion holder within the text. Furthermore, sentiment analysis can be applied to varying scopes such as document, paragraph, sentence and sub-sentence levels.
Vendors that offer sentiment analysis platforms or SaaS products include Brandwatch, Hootsuite, Lexalytics,  NetBase, Sprout Social, Sysomos and Zoho. Businesses that use these tools can review customer feedback more regularly and proactively respond to changes of opinion within the market.

Types of sentiment analysis

  1. Fine-grained sentiment analysis provides a more precise level of polarity by breaking it down into further categories, usually very positive to very negative. This can be considered the opinion equivalent of ratings on a 5-star scale.
  2. Emotion detection identifies specific emotions rather than positivity and negativity. Examples could include happiness, frustration, shock, anger and sadness.
  3. Intent-based analysis recognizes actions behind a text in addition to opinion. For example, an online comment expressing frustration about changing a battery could prompt customer service to reach out to resolve that specific issue.
  4. Aspect-based analysis gathers the specific component being positively or negatively mentioned. For example, a customer might leave a review on a product saying the battery life was too short. Then, the system will return that the negative sentiment is not about the product as a whole, but about the battery life.


Applications of sentiment analysis
  • Sentiment analysis tools can be used by organizations for a variety of applications, including:
  • Identifying brand awareness, reputation and popularity at a specific moment or over time.
  • Tracking consumer reception of new products or features.
  • Evaluating the success of a marketing campaign.
  • Pinpointing the target audience or demographics.
  • Collecting customer feedback from social media, websites or online forms.
  • Conducting market research.
  • Categorizing customer service requests.


Challenges with sentiment analysis

Challenges associated with sentiment analysis typically revolve around inaccuracies in training models. Objectivity, or comments with a neutral sentiment, tend to pose a problem for systems and are often misidentified. For example, if a customer received the wrong color item and submitted a comment "The product was blue," this would be identified as neutral when in fact it should be negative.

Sentiment can also be challenging to identify when systems cannot understand the context or tone. Answers to polls or survey questions like "nothing" or "everything" are hard to categorize when the context is not given, as they could be labeled as positive or negative depending on the question. Similarly, irony and sarcasm often cannot be explicitly trained and lead to falsely labeled sentiments.
Computer programs also have trouble when encountering emojis and irrelevant information. Special attention needs to be given to training models with emojis and neutral data so as to not improperly flag texts.

Finally, people can be contradictory in their statements. Most reviews will have both positive and negative comments, which is somewhat manageable by analyzing sentences one at a time. However, the more informal the medium (Twitter or blog posts, for example), the more likely people are to combine different opinions in the same sentence and the more difficult it will be for a computer to parse.

Comments

Popular posts from this blog

Black swan

A  black swan event  is an incident that occurs randomly and unexpectedly and has wide-spread ramifications. The event is usually followed with reflection and a flawed rationalization that it was inevitable. The phrase illustrates the frailty of inductive reasoning and the danger of making sweeping generalizations from limited observations. The term came from the idea that if a man saw a thousand swans and they were all white, he might logically conclude that all swans are white. The flaw in his logic is that even when the premises are true, the conclusion can still be false. In other words, just because the man has never seen a black swan, it does not mean they do not exist. As Dutch explorers discovered in 1697, black swans are simply outliers -- rare birds, unknown to Europeans until Willem de Vlamingh and his crew visited Australia. Statistician Nassim Nicholas Taleb uses the phrase black swan as a metaphor for how humans deal with unpredictable events in his 2007...

A Graphics Processing Unit (GPU)

A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calculations, primarily for the purpose of rendering images. A GPU may be found integrated with a central processing unit (CPU) on the same circuit, on a graphics card or in the motherboard of a personal computer or server. In the early days of computing, the CPU performed these calculations. As more graphics-intensive applications such as AutoCAD were developed; however, their demands put strain on the CPU and degraded performance. GPUs came about as a way to offload those tasks from CPUs, freeing up their processing power. NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market. GPU vs. CPU A graphics processing unit is able to render images more quickly than a central processing unit because of its parallel processing architecture, which allows it to perform multiple calculations at the same time. A single CPU does not have this capability, although multi...

6G (sixth-generation wireless)

6G (sixth-generation wireless) is the successor to 5G cellular technology. 6G networks will be able to use higher frequencies than 5G networks and provide substantially higher capacity and much lower latency. One of the goals of the 6G Internet will be to support one micro-second latency communications, representing 1,000 times faster -- or 1/1000th the latency -- than one millisecond throughput. The 6G technology market is expected to facilitate large improvements in the areas of imaging, presence technology and location awareness. Working in conjunction with AI, the computational infrastructure of 6G will be able to autonomously determine the best location for computing to occur; this includes decisions about data storage, processing and sharing.  Advantages of 6G over 5G 6G is expected to support 1 terabyte per second (Tbps) speeds. This level of capacity and latency will be unprecedented and wi...